serghey » Чт авг 10, 2006 3:07 am
Химические связи, в которые вступает углерод, образуя органические соединения, называются "ковалентными связями". Считается, что ковалентная связь устанавливается, когда два атома имеют общие электроны.
Электроны атома образуют особые оболочки, располагающиеся вокруг ядра. Внутренняя оболочка не может иметь больше двух электронов, в следующей оболочке может быть не более восьми электронов. В третьей - их число может доходить до восемнадцати. Число электронов увеличивается с каждой следующей оболочкой. В этой схеме интересно то, что атом, кажется, стремится укомплектовать число электронов в каждой оболочке. Водород, например, имеет шесть электронов во второй (самой удаленной) оболочке, поэтому он готов вступать в соединения с другими атомами, которые дадут ему еще два электрона, чтобы увеличить их количество до восьми. (Почему атомы ведут себя таким образом, до сих пор неизвестно, но то, что они так поступают, очень хорошо, поскольку, если бы они этого не делали, не было бы жизни.)
Ковалентные связи - результат стремления атомов пополнить свои электронные оболочки. Два или более атомов могут восполнить недостаток электронов, поделившись ими друг с другом. Хороший пример - молекула воды (Н2О), строительный материал которой (два атома водорода и один атом кислорода) создает ковалентную связь. В этом соединении кислород доводит число электронов второй оболочки до восьми за счет двух электронов оболочек (по одному от каждого) двух атомов водорода. Точно так же атомы водорода "берут в долг" один электрон кислорода, чтобы пополнить свои собственные оболочки.
Углерод легко создает ковалентные связи с другими атомами (включая атомы углерода), на основе которых может возникать огромное число разнообразных соединений. Одно из самых простых соединений - метан, обычный газ, создаваемый ковалентной связью четырех атомов водорода и одного атома углерода. Углерод имеет только шесть электронов во внешней оболочке, и ему не хватает четырех электронов, а не двух, как в случае с кислородом; поэтому, чтобы обеспечить требуемое количество электронов, необходимы четыре атома водорода.
Исключительная способность углерода образовывать связи с другими атомами уже отмечалась нами. Класс соединений, состоящих исключительно из углерода и водорода, называется углеводородами. Это огромная семья соединений, включающая природный газ, жидкую нефть, керосин и смазочные масла. Такие углеводороды, как этилен и пропилен, представляют собой основу современной нефтехимической промышленности. Бензол, толуол и живица - углеводороды, знакомые всем, кто когда-либо работал с красками. Нафталин, защищающий нашу одежду от моли, - еще один углеводород. При добавлении хлора или фтора некоторые углеводороды приобретают функции анестезирующих веществ, кроме того, они образуют вещества, используемые в огнетушении или же фреон - газ, широко используемый при замораживании.
Существует еще один класс соединений с углеродом, водородом и кислородом на основе ковалентной связи.
В этой группе мы находим спирты, такие как этанол, пропанол, кетоны, альдегиды, жирные кислоты и многие, многие другие вещества.
Еще одну группу соединений углерода, водорода и кислорода составляет сахар, включая глюкозу и фруктозу.
Целлюлоза, составляющая основу дерева и сырья для бумаги, уксус, пчелиный воск и муравьиная кислота - это также углеводороды. Каждое соединение из невероятно богатого арсенала веществ и материалов, встречающихся в природе, есть не что иное, как различные сочетания углерода, водорода и кислорода, соединенных ковалентной связью.
Когда углерод, водород и азот вступают в такие связи, в результате возникают молекулы, составляющие основу и структуру самой жизни, - аминокислоты, которые образуют белки. Нуклеотиды, участвующие в построении ДНК, - это тоже молекулы, созданные из углерода, водорода, кислорода и азота. Иными словами, ковалентные связи, в которые может вступать атом углерода, оказываются жизненно важными. Если бы углерод, водород, азот и кислород не стремились с такой готовностью делиться электронами друг с другом, жизнь была бы невозможна.
Столь важную для существования жизни способность углерода вступать в такие связи химики называют "метастабильностью". Биохимик Дж. В. С. Халдейн определяет метастабильность следующим образом:
метастабильная молекула - это молекула, которая высвобождает энергию путем трансформации, но она достаточно стабильна, чтобы существовать длительное время, если не будет активирована при помощи тепла, излучения или соединения с каким-либо катализатором.90
Из этого довольно технического определения следует, что углерод обладает уникальной структурой, благодаря которой при нормальных условиях он с большой легкостью устанавливает ковалентные связи.
Но именно здесь положение дел становится особенно любопытным, поскольку углерод метастабилен только в очень узком диапазоне температур. При температуре выше 100оС соединения углерода становятся нестабильными. Это настолько хорошо известный факт, что многие его даже не замечают.
Например, когда мы жарим мясо, мы изменяем структуру его углеродных соединений. Приготовленное мясо становится абсолютно "мертвым", т.е. его химическая структура отлична от той, какая у него была, когда оно было частью живого организма.
В самом деле, большинство соединений углерода теряют свойства живой материи при температуре свыше 100oС: распадается большинство витаминов, сахара претерпевают структурные изменения и, теряют питательные свойства. При температуре 150oС углеродные соединения начинают гореть.
Иными словами, для того, чтобы соединения углерода оставались неизменными, окружающая температура не должна превышать 100oС. Нижний предел - 0oС, если температура упадет намного ниже 0oС, органическая биохимия станет невозможной.
В случае других соединений это не так. Большинство неорганических соединений не метастабильны, т.е. их стабильность не зависит в такой степени от колебаний температуры. Чтобы убедиться в этом, давайте проведем эксперимент. Насадите кусок мяса на железный шампур и положите его над огнем. Когда температура повысится, мясо станет коричневым и в конце концов сгорит, а железному шампуру ничего не сделается. То же самое произойдет, если заменить железо камнем или стеклом. Пришлось бы очень сильно увеличить температуру, чтобы структура этих материалов начала меняться.
К этому моменту вы, наверное, уже поняли, что диапазоны температур, необходимых для того, чтобы ковалентные связи углеродных соединений установились и остались постоянными, сходен с температурами, существующими на нашей планете. Мы говорили ранее, что диапазон температур во Вселенной огромен - от миллионов градусов в недрах звезд до абсолютного нуля (-273,15oС). Узкий диапазон температурных колебаний на Земле, сотворенной для человека, обеспечивает возможность создания углеродных соединений - строительного материала жизни.
Но на этом любопытные "совпадения" не заканчиваются. Только при такой температуре вода остается жидкой, а жидкая вода, как мы знаем, - одно из основных требований жизни.
Следовательно, для того, чтобы вода оставалась жидкой, а соединения углерода - постоянными, необходим один и тот же температурный режим. Такой режим и предоставляется им на планете Земля. Нет никаких физических или естественных законов, устанавливающих такое положение дел. Но эта ситуация - еще одно свидетельство того, что вода, углерод и сама Земля сотворены так, чтобы находиться в абсолютной гармонии друг с другом.
У вас нет необходимых прав для просмотра вложений в этом сообщении.